Luso Academia

Início » 04 Ensino Superior » 02 Física » Análise Matemática – Exercícios II

Análise Matemática – Exercícios II

Estatística do blog

  • 194,185 académicos

De modo a receber actualizações do nosso blog via email clique em Seguir.

Junte-se a 744 outros seguidores

1.

a) Para a sequência { \dfrac{n^2+1}{2n^2-1}} mostre que existe uma ordem { k} onde { \left | u_n - \dfrac{1}{2} \right |<10^{-3}} é válido.

{ \begin{aligned} \left | \dfrac{n^2+1}{2n^2-1} - \dfrac{1}{2} \right | &< 10^{-3} \\ \left | \dfrac{2n^2+2-2n^2+1}{2(2n^2-1)} \right | &< 10^{-3} \\ \left | \dfrac{3}{2(2n^2-1)} \right | &< 10^{-3} \\ \dfrac{|3|}{|2(2n^2-1)|} &< 10^{-3} \end{aligned}}

Uma vez que { 2(2n^2-1)>0} vem que

{ \begin{aligned} \dfrac{3}{2(2n^2-1)} &< 10^{-3} \\ 3/2 \times 10^3 &< 2n^2-1 \\ 3/4\times 10^3+1/2 &< n^2 \\ \sqrt{3/4\times 10^3 + 1/2} &< n \end{aligned}}

Tomando { k > \left \lfloor \sqrt{3/4\times 10^3 + 1/2}\right \rfloor +1} Temos o resultado pretendido.

b) Mostre por definição que { u_n \rightarrow 1/2}

Pela definição de limite e usando a), temos

\displaystyle  n > \sqrt{\dfrac{3}{4 \delta}+1/2}

Fazendo

\displaystyle  k= \left \lfloor \sqrt{\dfrac{3}{4 \delta}+1/2} \right\rfloor+1

a diferença entre { u_n} e { 1/2} é sempre menor do que { \delta}.

2. Mostre que { \lim u_n = 0 \Leftrightarrow \lim |u_n| = 0}

Na maior parte dos casos é mais fácil mostrar que o módulo da sequência tende para {0}. Com esta proposição podemos ver que as proposições são equivalentes e como tal podemos evitar cálculos longos e aborrecidos.

Diz-se que { u_n \rightarrow a} sse { \forall \delta > 0 \, \exists k \in \mathbb{N}: \quad n>k \Rightarrow |u_n - a| < \delta}

Assim { \lim |u_n - a| = 0} sse

{\forall \delta > 0\,\exists k\in\mathbb{N}:\; n > k\Rightarrow||u_n-a|-0| < \delta}

{\Leftrightarrow \forall \delta > 0 \, \exists k \in \mathbb{N}:\; n > k \Rightarrow |u_n - a| < \delta}

Com { a=0} as proposições { \lim u_n = 0} e { \lim |u_n| = 0} são de facto equivalentes.

3. Calcule { \lim \sqrt{n+1}-\sqrt{n}}

Este limite que estamos interessados em calcular pode ser visto como { \lim u_n - v_n} onde { u_n = \sqrt{n+1}} e { v_n = \sqrt{n}}.

Sabemos que { \lim u_n = \lim \sqrt{n+1} = +\infty} e { \lim v_n = \lim \sqrt{n} = +\infty}.

O que estamos a tentar determinar é quão rápido estas sucessões divergem. Se o valor do limite é { a \in \mathbb{R}^+} então { u_n} diverge ligeiramente mais depressa, se for { a \in \mathbb{R}^-} então é { v_n} que diverge ligeiramente mais depressa.

No caso de { \pm \infty} vemos que uma das sequências diverge muito mais rápido que a outra.

Vamos então calcular:

{\begin{aligned} \lim \sqrt{n+1}-\sqrt{n} &= \lim \dfrac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}} \\ &= \lim \dfrac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \\ &= \lim \dfrac{1}{\sqrt{n+1}+\sqrt{n}} \\ &= \lim \dfrac{1}{\sqrt{n(1+1/n)}+\sqrt{n}} \\ &= \lim \dfrac{1}{\sqrt{n}\sqrt{1+1/n}\sqrt{n}} \\ &= \lim \dfrac{1}{\sqrt{n}\left( \sqrt{1+1/n}+1 \right)} \\ &= \lim\dfrac{1}{\left( \sqrt{1+1/n}+1 \right) } \lim \dfrac{1}{\sqrt{n}} \\ &= \lim\dfrac{1}{2 \sqrt{n}} \\ &= 0 \end{aligned}}

O que quer dizer que as sucessões divergem com essencialmente a mesma velocidade.

4. Calcule { \lim \left( \sqrt{n^2+n} - \sqrt{n^2+1} \right)}

{\begin{aligned} \lim \left( \sqrt{n^2+n} - \sqrt{n^2+1} \right)&=\lim \dfrac{n^2+n-n^2-1}{\sqrt{n^2+n} + \sqrt{n^2+1}} \\ &=\lim \dfrac{n-1}{\sqrt{n^2\left(1+\frac{1}{n}\right)} + \sqrt{n^2\left(1+\frac{1}{n^2}\right)}} \\ &=\lim \dfrac{n-1}{n \sqrt{1+\frac{1}{n}} + n\sqrt{1+\frac{1}{n^2}}} \\ &=\lim \dfrac{n-1}{n\left( \sqrt{1+\frac{1}{n}} + \sqrt{1+\frac{1}{n^2}} \right)} \\ &=\lim \dfrac{n-1}{2n} \\ &=\dfrac{1}{2} \end{aligned}}

5. Calcule { \lim \displaystyle \sum _{k=1}^n \dfrac{1}{(n+k)^2}}.

Vamos escrever alguns termos desta soma para podermos ganhar alguma intuição sobre o que está a acontecer:

{ \displaystyle \sum _{k=1}^n \dfrac{1}{(n+k)^2} = \dfrac{1}{(n+1)^2}+\dfrac{1}{(n+2)^2}+\cdots + \dfrac{1}{(2n)^2}}

Ou seja, fazendo { n \rightarrow \infty} o que nós obtemos é cada vez mais termos para somar, mas os valores destes termos tornam-se cada vez menores.

O valor deste limite dir-nos-á qual destes efeitos contraditórios é mais forte.

Uma vez que estamos a somar { n} cujo valor absoluto é sucessivamente menor temos

\displaystyle  \displaystyle \sum _{k=1}^n \dfrac{1}{(n+k)^2} \leq \dfrac{n}{(n+1)^2}

Mas também é

\displaystyle  \displaystyle \sum _{k=1}^n \dfrac{1}{(n+k)^2} \geq \dfrac{n}{4n^2}

Assim

\displaystyle  \dfrac{n}{4n^2} \leq \displaystyle \sum _{k=1}^n \dfrac{1}{(n+k)^2} \leq \dfrac{n}{(n+1)^2}

com { \lim \dfrac{n}{4n^2} = \lim \dfrac{n}{(n+1)^2} = 0}

Logo { \lim \displaystyle \sum _{k=1}^n \dfrac{1}{(n+k)^2} = 0}.

Em conclusão o facto dos valores dos termos serem sucessivamente menores é mais importante para o valor do limite do que o facto do número de termos aumentar indefinidamente.

6. Calcule { \displaystyle \sum _{k=1}^n \dfrac{1}{\sqrt{n+k}}}

Uma situação semelhante à encontrada no exercício anterior

Uma vez que estamos a somar { n} cujo valor absoluto é sucessivamente menor temos

\displaystyle  \displaystyle \sum _{k=1}^n \dfrac{1}{\sqrt{n+k}} \geq \dfrac{n}{\sqrt{2n}}

Mas também é

\displaystyle  \displaystyle \sum _{k=1}^n \dfrac{1}{\sqrt{n+k}} \leq \dfrac{n}{\sqrt{n+1}}

Logo { \dfrac{n}{\sqrt{2n}} \leq \displaystyle \sum _{k=1}^n \dfrac{1}{\sqrt{n+k}} \leq \dfrac{n}{\sqrt{n+1}}}.

Uma vez que

\displaystyle  \lim \dfrac{n}{\sqrt{2n}} = \lim \dfrac{1}{\sqrt{2}}\dfrac{n}{\sqrt{n}}= \lim \dfrac{1}{\sqrt{2}}\sqrt{n} = + \infty

e

\displaystyle  \lim \dfrac{n}{\sqrt{n+1}} = \lim \dfrac{n}{\sqrt{n}}\dfrac{1}{\sqrt{1+1/n}} = \lim \sqrt{n}\dfrac{1}{\sqrt{1+1/n}} = +\infty

vem que

\displaystyle  \displaystyle \sum _{k=1}^n \dfrac{1}{\sqrt{n+k}} = + \infty

Desta vez o facto de termos um número infinito de termos para adicionar é mais relevante para o valor do limite do que o facto das fracções estarem a tender para {0}. Tal resultado advém desta vez termos raízes quadradas no denominador das fracções.

7. Calcule { \lim \dfrac{n^n}{n!}}

Visualmente:

\displaystyle  n^{n-1} = n \times n \times n \ldots \times n

com { n-1} termos.

\displaystyle  n! = 1 \times 2 \times 3 \times \ldots \times n = 2 \times 3 \times \ldots \times n

com { n-1} termos.

Então

\displaystyle  \lim \dfrac{n^n}{n!} \geq \lim \dfrac{n^n}{n^{n-1}} = + \infty

então também é

\displaystyle  \lim \dfrac{n^n}{n!} = +\infty

De onde podemos concluir que { n^n} tende para infinito mais rápido do que { n!}

8. Dê exemplo de sucessões que

a) { u_n \rightarrow +\infty} e { v_n \rightarrow - \infty}: { u_n+v_n=0}

{ u_n = n} e { v_n = -n}

b) { u_n \rightarrow +\infty} e { v_n \rightarrow - \infty}: { u_n+v_n=10}

{ u_n = n+10} e { v_n = -n}

c) { u_n \rightarrow +\infty} e { v_n \rightarrow - \infty}: { u_n+v_n=+\infty}

{ u_n = 2n} e { v_n = -n}

d) { u_n \rightarrow +\infty} e { v_n \rightarrow - \infty}: { u_n+v_n} não existe.

{ u_n = n+(-1)^n} e { v_n = -n}

e) { u_n \rightarrow 0} e { v_n \rightarrow \infty}: { u_n v_n = a \in \mathbb{R}}

{ u_n = \dfrac{a}{n}} e { v_n = n}

f) { u_n \rightarrow 0} e { v_n \rightarrow \infty}: { u_n v_n = 0}

{ u_n = \dfrac{1}{n^2}} e { v_n = n}

g) { u_n \rightarrow 0} e { v_n \rightarrow \infty}: { u_n v_n = +\infty}

{ u_n = \dfrac{1}{n}} e { v_n = n^2}

h) { u_n \rightarrow 0} e { v_n \rightarrow \infty}: { u_n v_n} não existe.

{ u_n = \dfrac{\sin n}{n}} e { v_n = n}

Anúncios

1 Comentário

  1. […] Para a segunda parte vamos calcular antes uma vez que sabemos que pelo artigo Análise Matemática ? Exercícios II […]

    Gostar

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s

%d bloggers like this: