Luso Academia

Início » 00 Geral » Como a Física explica a deformação da imagem dos corpos submersos na água?

Como a Física explica a deformação da imagem dos corpos submersos na água?

Estatística do blog

  • 229,939 académicos

De modo a receber actualizações do nosso blog via email clique em Seguir.

Junte-se a 744 outros seguidores

— 2.7.12. Refração em Dióptro plano —

Dióptro plano é o conjunto de dois meios homogéneos e transparentes, separados por uma superfície plana (ex: a água tranquila de um lago e o ar, ar e um objecto de vidro de superfície plana, etc.). Quando estamos fora da água e observamos um peixe que está dentro da água, temos a sensação de que o peixe se encontra a uma certa distância, mas se sentarmos apanha-lo, notamos que há uma diferença entre a posição real onde o peixe realmente se encontra e a posição da imagem deste peixe que nós vemos. O mesmo ocorre quando estando dentro da água (por exemplo de uma piscina), observamos uma pessoa que está na margem, acima da superfície livre da água.

Este fenómeno é chamado de profundidade aparente e é explicado através da lei de Snell-Descartes, quando se analisa a refração em um dióptro plano.

Um peixe dentro da água difunde luz em todas as direcções. Parte da luz difundida refrata-se ao atingir a superfície de separação dos meios água-ar.

Figura 45: Imagem observada num dióptro plano. [5]

Como a água é mais refringente que o ar (mais densa opticamente), os raios refratados da água para o ar afastam-se da normal e podem ser captados por um observador; este, em vez de ver directamente o objecto na posição {P}, vê a sua imagem, em {P'}, na intercecção dos prolongamentos dos raios refratados (imagem virtual do objecto real {P}). O observador fica com a sensação de que o objecto (no caso, o peixe) está mais próximo, quando na realidade ele está mais distante. Lembre-se que num sistema óptico qualquer, nós vemos a imagem produzida por este sistema óptico e não o objecto propriamente dito.

Figura 46: Profundidade aparente. [7]

Podemos estabelecer a relação entre profundidade real e profundidade aparente.

Na figura 46, o triângulo {API}, o ângulo interno do vértice A é {i_1} e no triângulo {A'PI} o ângulo no vértice {A'} é {i_2}. As suas tangentes são {tg (i_1) =\frac{PI}{AP}=\frac{x}{d}} e {tg (i_2) =\frac{PI}{A'P}=\frac{x}{d'}}. Dividindo estas duas relações, fica { \frac{tg (i_1)}{tg (i_2)} =\frac{d'}{d}}. Para observadores muito próximos da normal, {i_1} e {i_2} são muito pequenos , logo é válida a aproximação {tg (i_1) \approx sen (i_1) \approx i_1}. O mesmo ocorre com {i_2}. Logo a relação pode ser escrita por { \frac{tg (i_1)}{tg (i_2)} = \frac{sen (i_1)}{sen (i_2)} =\frac{n_2}{n_1} = \frac{d'}{d}}:

Neste caso a relação entre a profundidade real e a profundidade aparente será:

\displaystyle d=\frac{n_2}{n_1} . d' \ \ \ \ \ (39)

 

Observamos assim que a profundidade aparente {d'} é diferente da profundidade real {d}, podendo ser maior ou menor.

A profundidade aparente será menor do que a profundidade real se o meio no qual se situa o observador tiver um índice de refração menor do que o índice de refração do meio onde se encontra o objecto. Nestes casos o observador terá a sensação de que o objecto está mais próximo do que a sua posição real. Um exemplo disto é uma pessoa, na fora do lago que observa um peixe no lado.

De modo análogo, a profundidade aparente será maior do que a profundidade real quando o observador se encontrar num meio que tenha o índice de refração maior do que o índice de refração do meio onde se encontra o objecto. Neste caso, o observador terá a sensação de que o objecto está mais distante do que a sua posição real. Um exemplo disso é o caso de uma pessoa no interior da água que observa algo ou alguém fora da água.

Este conceito tem muitas consequências, com várias aplicações no dia-a-dia. Se quiseres atingir um peixe na água com um arpão, por exemplo, não deves atira-lo na direção da imagem que vês, mas sim um pouco abaixo dela. Caso contrário, falharás o alvo.

— 2.7.13. Superfície de faces paralelas —

Quando falamos de lâmina de faces paralelas (ou superfície de faces paralelas), falamos de uma placa de material transparente e homogénea, limitada por duas faces lisas, planas e paralelas.

Vários sistemas ópticos usados no nosso dia-a-dia são lâminas de faces paralelas, mas um exemplo mais simples são os vidro que constituem as janelas vidradas, muito comuns, nos dias de hoje.

Ao observarmos perpendicularmente sobre a lâmina, não ocorre nenhuma modificação na imagem, mas quando observamos obliquamente sobre ela, podemos notar uma certa deformação na imagem do objecto. Esta deformação será mais notada quanto maior for o índice de refração do material que constitui a lâmina, bem como quanto maior for a espessura da lâmina.

A deformação também aumenta com o aumento do ângulo de visualização. Este experimento pode ser facilmente realizado. Arranje um bloco (em forma de paralelepípedo) de material transparente (vidro, plástico ou outro). Caso não encontre o paralelepípedo, pode usar um material com outro formato qualquer, desde que tenha duas faces paralelas. Coloque um papel com letras num das faces e observe pela outra. Em seguida, vá inclinando a lâmina (em relação as letras e observa o que acontece com a imagem.

Figura 47: Trajecto de raios luminosos numa lâmina de faces paralelas. [7]

Na figura, a espessura da lâmina é designada por {e}, o seu índice de refracção relativo com respeito ao meio circundante (o ar) é {n} ({n>1}). O raio incidente {SD} é refratado pela face superior da lâmina passando de no caminho indicado pelo segmento {DF} e sai fora da lâmina no raio indicado por {FR} . Segundo a lei de Snell-Descartes, para a refracção pela face superior, temos:

\displaystyle 1. sen( i_1) = n . sen (r_1) \ \ \ \ \ (40)

 

e para a refracção pela face inferior, temos:

\displaystyle n. sen (r_2) = 1. sen (i_2) \ \ \ \ \ (41)

 

Ora, como se vê na figura, os ângulos {r_1} e {r_2} são iguais. Logo: { r1 = r2 = r} Substituindo esta igualdade nas equações 40 e 41, obtemos que:

\displaystyle i_1=i_2=i \ \ \ \ \ (42)

Ao atravessar a lâmina de faces paralelas o raio luminoso não muda de direcção de propagação. O raio emergente é paralelo ao raio incidente. Apesar de o raio emergente ser paralelo ao raio incidente, mas a imagem observada não é (em geral) igual ao objecto. Suponhamos que o objecto luminoso {S} emite raios pouco inclinados em relação a normal das faces da lâmina. A imagem de {S} criada pela lâmina será {S'}. O deslocamento da imagem em relação ao objecto é {\delta = SS'}. O afastamento entre os dois raios paralelos (incidente {SD} e emergente {FR}), ou seja, o deslocamento transversal do raio emergente em relação ao raio incidente é igual a {d}. A relação entre estes parâmetros poderá ser deduzida.

Consideremos a figura 47. O triângulo {FGD}, recto no ângulo sob o vértice {G}, o ângulo interno do vértice {F} será {i-r}. O seu seno será {sen (i-r) =\frac{DG}{DF}=\frac{d}{DF}}. Então:

\displaystyle DF=\frac{d}{sen(i-r)} \ \ \ \ \ (43)

 

No triângulo rectângulo {DEF}, recto em {E}, o ângulo sobre o vértice {D} é {r}, logo: {cos (r)= \frac{DE}{DF}=\frac{e}{DF}}. Então:

\displaystyle DF=\frac{e}{cos (r)} \ \ \ \ \ (44)

 

Combinando as expressões 43 com 44, obtemos :

\displaystyle d=\frac{e . sen (i-r)}{cos (r)} \ \ \ \ \ (45)

 

O afastamento entre os raios será directamente proporcional a espessura da lâmina. Podemos também verificar, experimentalmente , que o afastamento entre os raios {d} aumenta com o aumento do ângulo de incidência. Mas demonstrar isso matematicamente acaba por ser um pouco extenso. Por outro lado, se consideramos o triângulo {CHI}, recto em {I}, o ângulo sob o vértice {C} será {90^0-i}. Logo, o seu cosseno será {cos ( 90^0-i)=\frac{CI}{CH}=\frac{d}{\delta}}. Lembre-se que {cos(90^0-i)=sen (i) \Rightarrow sen (i)=\frac{d}{\delta}\Rightarrow d= \delta . sen (i)}. Substituindo isso na equação 43, obtemos:

\displaystyle \delta=\frac{e . sen (i-r)}{cos (r). sen (i)}\ \ \ \ \ (46)

 

Desenvolvendo o seno da diferença, separando os denominadores, e simplificando, obtemos a expressão obtemos:

\displaystyle \delta=(1-\frac{cos(i)}{n . cos (r)}).e \ \ \ \ \ (47)

 

Quando a lâmina é bastante delgada (fina, pouco espessa), podemos considerar que o raio emergente é confundido com o raio incidente.

 

— Referências Bibliográficas —

[1] Lilia Coronato Courrol & André de Oliveira Preto. APOSTILA TEÓRICA: ÓPTICA TÉCNICA I, FATEC-SP , [s.d.].
[2] Jaime Frejlich. ÓPTICA: TRANSFORMAÇÃO DE FOURIER E PROCESSAMENTO DE IMAGENS, Universidade Federal de Campinas – SP, [2010].
[3] Sérgio C. Zilio. ÓPTICA MODERNA: FUNDAMENTOS E APLICAÇÕES, [2010].
[4] Renan Schetino de Souza. ÓPTICA GEOMÉTRICA, [2012].
[5] Hugh D. Young & Roger Freedman. FÍSICA IV: ÓPTICA E FÍSICA MODERNA, [2009].
[6]Hugh D. Young & Roger Freedman. FÍSICA III: ELECTROMAGNETISMO, [2009].
[7] Julião de Sousa Leal. TRABALHO DE FIM DE CURSO: MANUAL DE ÓPTICA, FACULDADE DE CIÊNCIAS DA UNIVERSIDADE AGOSTINHO NETO, [s.d.]

Anúncios

1 Comentário

  1. anselmotomas diz:

    Reblogged this on Luso Academia.

    Gostar

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s

%d bloggers like this: