Luso Academia

Início » 04 Ensino Superior » 02 Física » Equações diferenciais homogéneas.Exercícios resolvidos

Equações diferenciais homogéneas.Exercícios resolvidos

Estatística do blog

  • 194,185 académicos

De modo a receber actualizações do nosso blog via email clique em Seguir.

Junte-se a 744 outros seguidores

— 2. Equações diferenciais homogéneas.Exercícios resolvidos —

No artigo passado apresentamos exercícios resolvidos sobre equações diferenciais com variáveis separáveis, neste artigo vamos tratar de resolver exercícios relacionados a equações diferenciais homogéneas.Aconselhamos ao caro leitor a fazer uma revisão sobre a resolução de integrais.

Exercício 1 Cada uma das equações diferenciais apresentada é homogénea.Resolva as equações diferenciais dadas usando as substituições adequadas.

  1. {(y^{2}+yx)dx+x^{2}dy=0}

    Solução:Usando {y=ux \Rightarrow dy=udx+xdu}, teremos:

    \displaystyle (u^{2}x^{2}+ux^{2})dx+x^{2}(udx+xdu)=0

    dividindo por {x^{2}} temos:

    \displaystyle (u^{2}+u)dx+(udx+xdu)=0 \Rightarrow (u^{2}+2u)dx+xdu)=0

    separando as variáveis,

    \displaystyle \dfrac{dx}{x}+\dfrac{du}{(u^{2}+2u)}

    integrando:

    \displaystyle \ln |x|+\dfrac{1}{2}\ln |u|-\dfrac{1}{2}\ln |u+2|=C

    \displaystyle 2\ln |x|+\ln |u|-\ln |u+2|=2C

    \displaystyle \ln\left|\dfrac{x^{2}u}{u+2}\right|=2C \Rightarrow \dfrac{x^{2}u}{u+2}=C_{1}

    como {u=\dfrac{y}{x}}, então:

    \displaystyle \dfrac{x^{2}\dfrac{y}{x}}{\dfrac{y}{x}+2}=C_{1}\Rightarrow x^{2}y=C_{1}(y+2x)

     

  2. {\dfrac{dy}{dx}=\dfrac{x+3y}{3x+y}}

    Solução:podemos escrever a equação da seguinte maneira:

    \displaystyle (x+3y)dx-(3x+y)dy=0

    Usando {y=ux \Rightarrow dy=udx+xdu}, teremos:

    \displaystyle (x+3ux )dx-(3x+ux )(udx+xdu)=0

    dividindo por {x} temos:

    \displaystyle (1+3u )dx-(3+u)(udx+xdu)=0

    multiplicando as variáveis e organizando temos

    \displaystyle (u^{2}-1)dx+x(u+3)du=0

    separando as variáveis,

    \displaystyle \dfrac{dx}{x}+\dfrac{u+3}{(u-1)(u+1)}du=0

    integrando

    \displaystyle \ln|x|+2\ln|u-1|-\ln|u+1|=C \Rightarrow \ln\left|\dfrac{x(u-1)^{2}}{u+1}\right|=C

    \displaystyle \dfrac{x(u-1)^{2}}{u+1}=C_{1}

    sabemos que {u=\dfrac{y}{x}}, então:

    \displaystyle \dfrac{x\left(\dfrac{y}{x}-1\right)^{2}}{\dfrac{y}{x}+1}=C_{1}\Rightarrow (y-x)^{2}=C_{1}(y+x)^{2}

     

  3. {xdx+(y-2x)dy=0}

    Solução:Usando {x=vy \Rightarrow dx=vdy+ydv}, teremos:

    \displaystyle vy(vdy+ydv)+(y-2vy)dy=0

    dividindo por {y} temos:

    \displaystyle v(vdy+ydv)+(1-2v)dy=0

    multiplicando as variáveis e organizando temos:

    \displaystyle vydv+(v^{2}-2v+1)dy=0

    separando as variáveis temos

    \displaystyle \dfrac{vdv}{(v-1)^{2}}+\dfrac{dy}{y}=0\Rightarrow \dfrac{(v-1)dv}{(v-1)^{2}}+\dfrac{dv}{(v-1)^{2}}+\dfrac{dy}{y}=0

    integrando

    \displaystyle \ln |v-1|-\dfrac{1}{v-1}+\ln |y|=C

    sabemos que {v=\dfrac{x}{y}} então:

    \displaystyle \ln \left|\dfrac{x}{y}-1\right|-\dfrac{1}{\dfrac{x}{y}-1}+\ln |y|=C

    podemos escrever a solução da seguinte maneira

    \displaystyle (x-y)\ln |x-y|-y=C(x-y)

     

  4. {[x-y\arctan (y/x)]dx+x\arctan (y/x)dy=0}

    Solução:se {y=ux \Rightarrow dy=udx+xdu}, substituindo na equação temos:

    \displaystyle [x-ux\arctan u]dx+x\arctan u(udx+xdu)=0

    simplificando as variáveis temos:

    \displaystyle dx+x\arctan u du=0

    separando as variáveis tem-se

    \displaystyle \dfrac{dx}{x}+\arctan udu=0

    integrando,

    \displaystyle \ln|x|+u\arctan u-\dfrac{1}{2}\ln |1+u^{2}|=\ln C

    como {u=\dfrac{y}{x}}, então:

    \displaystyle \ln|x|+\dfrac{y}{x}\arctan \left(\dfrac{y}{x}\right)-\dfrac{1}{2}\ln \left|1+\left(\dfrac{y}{x}\right)^{2}\right|=\ln C

    organizando a solução tem-se:

    \displaystyle 2y\arctan \left(\dfrac{y}{x}\right)=x\ln \left|\dfrac{x^{2}+y^{2}}{x^{4}}\right|+C_{1}

    onde {C_{1}=\ln C^{2}}

     

  5. {[y\cos (y/x)+x\sin (y/x)]dx=x\cos (y/x)dy}

    Solução:se {y=ux \Rightarrow dy=udx+xdu}, substituindo na equação dada obtemos:

    \displaystyle (ux\cos u+x\sin u)dx=x\cos u (udx+xdu)

    agrupando os termos semelhantes e simplificando obtém-se:

    \displaystyle \sin udx=x\cos udu

    separando as variáveis,

    \displaystyle \dfrac{dx}{x}=\dfrac{\sin u}{\cos u}du

    integrando,

    \displaystyle \ln x=\ln \sin u +\ln C\Rightarrow x=C\sin u

    como {u=\dfrac{y}{x}}, então:

    \displaystyle x=C\sin \dfrac{y}{x}

     

  6. {x\dfrac{dy}{dx}=y+\sqrt{x^{2}+y^{2}}}

    Solução:A equação diferencial dada pode ser escrita da seguinte maneira:

    \displaystyle (y+\sqrt{x^{2}+y^{2}})dx-xdy=0

    se {y=ux \Rightarrow dy=udx+xdu}, substituindo na equação acima obtemos:

    \displaystyle (ux+\sqrt{x^{2}+u^{2}x^{2}})dx-x(udx+xdu)=0

    agrupando os termos e simplificando temos:

    \displaystyle x\sqrt{1+u^{2}}dx-x^{2}du=0

    separando as variáveis:

    \displaystyle \dfrac{dx}{x}-\dfrac{du}{\sqrt{1+u^{2}}}=0

    integrando,

    \displaystyle \ln |x|-\ln \left|u+\sqrt{1+u^{2}}\right|= C \Rightarrow \dfrac{x}{(u+\sqrt{1+u^{2}})}=e^{C}

    como {u=\dfrac{y}{x}}, então:

    \displaystyle \dfrac{x}{\dfrac{y}{x}+\sqrt{1+\left(\dfrac{y}{x}\right)^{2}}}=C_{1}

    simplificando a equação temos

    \displaystyle x^{2}=C_{1}(y+\sqrt{y^{2}+x^{2}})

Exercício 2 Resolva os problemas com os valores iniciais dados usando substituições apropriadas

  1. {ydx+x(\ln x-\ln y-1)dy=o, \quad y(1)=e}

    Solução:Se {x=vy \Rightarrow dx=vdy+ydv} substituirmos na equação, teremos:

    \displaystyle y(vdy+ydv)+vy(\ln vy-\ln y-1)dy=o

    \displaystyle (vdy+ydv)+v(\ln v+ \ln y-\ln y-1)dy=o

    \displaystyle vdy+ydv+v\ln v dy-vdy=o\Rightarrow ydv+v\ln v dy=0

    separando as variáveis:

    \displaystyle \dfrac{dv}{v\ln v}+\dfrac{dy}{y}=0

    integrando

    \displaystyle \ln|\ln |v||+\ln |y|=C \Rightarrow \ln |y\ln |v||=C\Rightarrow y\ln |v|=C_{1}

    sabemos que {v=\dfrac{x}{y}} então:

    \displaystyle y\ln \left|\dfrac{x}{y}\right|=C_{1}

    usando {y(1)=e} nos encontramos

    \displaystyle e\ln \left|\dfrac{1}{e}\right|=C_{1}\Rightarrow C_{1}=-e

    a solução do problema de valor inicial será:

    \displaystyle y\ln \left|\dfrac{x}{y}\right|=-e

     

  2. {(x+ye^{y/x})dx-xe^{y/x}dy=0, \quad y(1)=0}

    Solução:Usando {y=ux \Rightarrow dy=udx+xdu}, teremos:

    \displaystyle (x+uxe^{u})dx-xe^{u}(udx+xdu)=0

    dividindo por {x} temos:

    \displaystyle (1+ue^{u})dx-e^{u}(udx+xdu)=0

    multiplicando e organizando as variáveis teremos:

    \displaystyle dx-xe^{u})du=0

    agora vamos separar as variáveis

    \displaystyle \dfrac{dx}{x}-e^{u}du=0

    integrando a equação temos

    \displaystyle \ln |x|-e^{u}=C

    sabemos que {u=\dfrac{y}{x}}, então:

    \displaystyle \ln |x|-e^{\frac{y}{x}}=C

    usando {y(1)=0}, obtemos

    \displaystyle \ln |1|-e^{\frac{0}{1}}=C \Rightarrow C=-1

    A solução do problema de valor inicial é:

    \displaystyle \ln |x|-e^{u}=-1

     

  3. {(x^{2}+2y^{2})dx-xydy=0, \quad y(-1)=1}

    Solução:Usando {y=ux \Rightarrow dy=udx+xdu}, teremos:

    \displaystyle (x^{2}+2u^{2}x^{2})dx-ux^{2}(udx+xdu)=0

    vamos dividir por {x^{2}} e depois multiplicamos e simplificamos os termos semelhantes:

    \displaystyle (1+u^{2})dx-uxdu=0

    separando as variáveis,

    \displaystyle \dfrac{dx}{x}-\dfrac{udu}{1+u^{2}}=0

    integrando,

    \displaystyle \ln |x|-\dfrac{1}{2}\ln |1+u^{2}|=C\Rightarrow \dfrac{x^{2}}{1+u^{2}}=e^{2C}

    como {u=\dfrac{y}{x}}, então:

    \displaystyle \dfrac{x^{2}}{1+\left(\dfrac{y}{x}\right)^{2}}=C_{1}

    organizando a equação,

    \displaystyle x^{4}=C_{1}(y^{2}+x^{2})

    usando a condição inicial {y(-1)=1} temos:

    \displaystyle (-1)^{4}=C_{1}(1^{2}+(-1)^{2})\Rightarrow C_{1}=\dfrac{1}{2}

    A solução do problema de valor inicial é:

    \displaystyle x^{4}=\dfrac{1}{2}(y^{2}+x^{2})

No próximo artigo vamos apresentar exercícios resolvidos sobre as equações diferenciais exatas.

Anúncios

Deixe um comentário

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão / Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão / Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão / Alterar )

Google+ photo

Está a comentar usando a sua conta Google+ Terminar Sessão / Alterar )

Connecting to %s

%d bloggers like this: